Work Package 3

Work package number


Lead beneficiary

1 - NTUA

Work package title

Modelling, analysis and design of optimized structural systems: Steel - Concrete

Start month


End month




In this work package the collapse load of optimized steel and concrete structures, hence their strength, will be predicted by means of advanced nonlinear numerical analysis, in order to verify the ultimate limit state criteria. It is well known that collapse may be due to development at certain cross-sections of stresses exceeding the material capacity, a condition known as material nonlinearity, or due to buckling, associated with sudden increase of displacements for a small increase in applied load, a condition known also as geometric nonlinearity, or due to a combination of both types of nonlinearity. The prevailing approach proposed by modern codes for carrying out checks of steel members in the ultimate limit state consists of obtaining action effects by means of linear elastic analysis of the structure subjected to design loads, and comparing them for each member to resistances that account for both types of eventual nonlinearity. This is usually accomplished by multiplying the cross-section resistance, assuming full exploitation of the material capacity of the cross-section, by appropriate reduction factors, representing the influence of geometric nonlinearity, accounting also for the reduction of strength due to interaction between axial forces and bending moments. However, such reduction and interaction factors are available only for simple, common cases of geometry and loading. For the unconventional shapes of structural members resulting from the optimization process a different approach will be needed, as outlined in this work package.


Description of work and role of partners

WP3 - Modelling, analysis and design of optimized structural systems: Steel - Concrete [Months: 13-36]
In recent years structural design codes have adopted limit state design (LSD), replacing the older concept of allowable stress design (ASD) [1-2]. Limit state design requires the structure to satisfy two principal criteria: the ultimate limit state (ULS) and the serviceability limit state (SLS). A limit state is a set of performance criteria that must be met when the structure is subject to loads. To satisfy the ultimate limit state, the structure must not collapse when subjected to any of the pertinent combinations of its design loads. To satisfy the serviceability limit state criteria, a structure must remain functional for its intended use subject to routine, everyday loading. In SLS the structure remains elastic, thus modelling and analysis do not pose any substantial difficulties, taking also into account the powerful computational tools that are available nowadays. For ULS checks, however, the issue described above is a significant obstacle for the design of structures with unconventional geometry. In order to address this shortcoming, modern codes already allow predicting collapse by means of more elaborate, nonlinear analysis with imperfections [1]. Recent technical literature contributes in that direction [3-10]. The WP consists of the following Tasks: Task 3.1: Methodology Numerical tools for understanding the behaviour, predicting all possible failure mechanisms, and evaluating the ultimate strength of steel structures by means of commercially available finite element software will be critically reviewed. Failure dominated by either material yielding or instability will be addressed, as well as interaction of failure modes. Steps will include setting up an appropriate finite element models, obtaining critical buckling modes from linearized buckling analysis (LBA), and then using a linear combination of these modes as imperfection pattern for geometrically and material nonlinear imperfection analyses (GMNIA). Equilibrium paths accompanied by snapshots of deformation and stress distribution at characteristic points will be employed for evaluating the results of the GMNI analysis, identifying the dominant failure modes and the corresponding weak areas, thus being able to propose appropriate strengthening measures, if needed. Practical details of the implementation of the proposed strategy will be addressed. Task 3.2: Case studies The methodology of Task 4.1 will be applied for the structural design of a wide range of steel and concrete structures resulting from the optimization process of WP1 and WP2. This will consists of (i) Transformation of the obtained optimized shapes into structural members that can actually be manufactured, (ii) Dimensioning of these members by means of the above mentioned advanced nonlinear finite element analysis methodology, (iii) Iterative interaction with the “Optimization Group” in order to balance eventual conflicts between optimization, aesthetics, safety, constructability, (iv) Design of connections between finalized structural members. Task 3.3: Comparison between numerical and code-based design For the case studies addressed in Task 4.2, it will be attempted to compare the more exact dimensioning based on nonlinear analyses with approximate results obtained if trying to adapt the available code provisions to the unusual geometries of the optimized structures, taking into account that the latter approach would be the one followed by practising structural engineers, if confronted with such a problem. Depending on the results of the comparison, it will also be attempted to propose simple guidelines and corrective factors in order to better adapt code provisions to certain types of optimized steel structures, for example trusses and arches.


Participation Per Partner